
spcl.inf.ethz.ch

@spcl_eth

ProbGraph: High-Performance and High-Accuracy 
Graph Mining with Probabilistic Set Representations

M. BESTA, C. MIGLIOLI, P. S. LABINI, J. TĚTEK, P. IFF, 

R. KANAKAGIRI, S. ASHKBOOS, K. JANDA, M. PODSTAWSKI, 

G. KWASNIEWSKI, N. GLEINIG, F. VELLA, O. MUTLU, T. HOEFLER.



spcl.inf.ethz.ch

@spcl_eth

2

Graph Mining



spcl.inf.ethz.ch

@spcl_eth

2

Graph Mining

A huge & 
complex graph 

dataset



spcl.inf.ethz.ch

@spcl_eth

2

Pattern counting 
(triangles, higher-

order cliques, dense 
subgraphs, ...)

Graph Mining

A huge & 
complex graph 

dataset



spcl.inf.ethz.ch

@spcl_eth

2

Pattern counting 
(triangles, higher-

order cliques, dense 
subgraphs, ...)

Clustering, Link 
Prediction, Vertex 

Similarity, ...

Graph Mining

A huge & 
complex graph 

dataset



spcl.inf.ethz.ch

@spcl_eth

3

Graph Mining: Do We Care?



spcl.inf.ethz.ch

@spcl_eth

Social sciences

3

Graph Mining: Do We Care?



spcl.inf.ethz.ch

@spcl_eth

Social sciences

Engineering

3

Graph Mining: Do We Care?



spcl.inf.ethz.ch

@spcl_eth

Social sciences

Engineering

Biology
Chemistry

Communication

3

Medicine Cybersecurity

Web graph analysis

...even philosophy

Graph Mining: Do We Care?



spcl.inf.ethz.ch

@spcl_eth

Social sciences

Engineering

Biology
Chemistry

Communication

3

Medicine Cybersecurity

Web graph analysis

...even philosophy

Graph Mining: Do We Care?

Challenges



spcl.inf.ethz.ch

@spcl_eth

4

Graph Mining & Graph Datasets: Challenges



spcl.inf.ethz.ch

@spcl_eth

4

Huge

[1] Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist

Graph Mining & Graph Datasets: Challenges



spcl.inf.ethz.ch

@spcl_eth

4

Irregular

Huge

[1] Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist

Graph Mining & Graph Datasets: Challenges



spcl.inf.ethz.ch

@spcl_eth

4

Irregular

Huge

Communication-heavy

Synchronization-heavy

[1] Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist

Graph Mining & Graph Datasets: Challenges



spcl.inf.ethz.ch

@spcl_eth

4

Irregular

Huge

Communication-heavy

Synchronization-heavy

[1] Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist

Graph Mining & Graph Datasets: Challenges
Power-hungry



spcl.inf.ethz.ch

@spcl_eth

4

Irregular

Huge

Communication-heavy

Synchronization-heavy

[1] Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist

Graph Mining & Graph Datasets: Challenges

Time complexities 
often O(nk) for k ≥ 2

Power-hungry



spcl.inf.ethz.ch

@spcl_eth

Goal: Making Graph Mining Radically Faster

6



spcl.inf.ethz.ch

@spcl_eth

Goal: Making Graph Mining Radically Faster
Do we need 100% accurate 

results in all cases?

6



spcl.inf.ethz.ch

@spcl_eth

Find all the 
patterns (e.g., 

cliques) in 1 day

Find ≥ 90% of all 
the patterns in

30 minutes

Goal: Making Graph Mining Radically Faster
Do we need 100% accurate 

results in all cases?

Let’s say we can 
choose between...

6



spcl.inf.ethz.ch

@spcl_eth

Find all the 
patterns (e.g., 

cliques) in 1 day

Find ≥ 90% of all 
the patterns in

30 minutes

Goal: Making Graph Mining Radically Faster
Do we need 100% accurate 

results in all cases?

Let’s say we can 
choose between...

6



spcl.inf.ethz.ch

@spcl_eth

7

Approximate Graph Processing: State & Challenges



spcl.inf.ethz.ch

@spcl_eth

7

Approximate Graph Processing: State & Challenges

We analyzed > 500 works and identified three classes of schemes...



spcl.inf.ethz.ch

@spcl_eth

7

Approximate Graph Processing: State & Challenges

We analyzed > 500 works and identified three classes of schemes...

Approximable 
algorithms (APX, etc.)

Lossy graph 
compression

Heuristics



spcl.inf.ethz.ch

@spcl_eth

7

Approximate Graph Processing: State & Challenges

We analyzed > 500 works and identified three classes of schemes...

Approximable 
algorithms (APX, etc.)

Lossy graph 
compression

Heuristics

...they all have problems



spcl.inf.ethz.ch

@spcl_eth

7

Approximate Graph Processing: State & Challenges

We analyzed > 500 works and identified three classes of schemes...

Approximable 
algorithms (APX, etc.)

Lossy graph 
compression

Heuristics

...they all have problems

Specific Slow

Little parallelism

Low 
accuracy



spcl.inf.ethz.ch

@spcl_eth

7

Approximate Graph Processing: State & Challenges

We analyzed > 500 works and identified three classes of schemes...

Approximable 
algorithms (APX, etc.)

Lossy graph 
compression

Heuristics

...they all have problems

Specific Slow

Little parallelism

Low 
accuracy

Specific

No/loose 
accuracy 

guarantees



spcl.inf.ethz.ch

@spcl_eth

7

Approximate Graph Processing: State & Challenges

We analyzed > 500 works and identified three classes of schemes...

Approximable 
algorithms (APX, etc.)

Lossy graph 
compression

Heuristics

...they all have problems

Specific Slow

Little parallelism

Low 
accuracy

Specific

No/loose 
accuracy 

guarantees

Large memory 
overheads

No/loose 
accuracy 

guarantees Slow



spcl.inf.ethz.ch

@spcl_eth

Approximate Graph Processing: Current Issues & Our Objectives

8



spcl.inf.ethz.ch

@spcl_eth

Large memory 
overheads

Approximate Graph Processing: Current Issues & Our Objectives

Slow

Little parallelism

Specific

No/loose accuracy 
guarantees

Low accuracy

8



spcl.inf.ethz.ch

@spcl_eth

Large memory 
overheads

Rich parallelism

Approximate Graph Processing: Current Issues & Our Objectives

Slow

Little parallelism

Specific

No/loose accuracy 
guarantees

Low accuracy

8



spcl.inf.ethz.ch

@spcl_eth

Large memory 
overheads

Wide applicability

Rich parallelism

Approximate Graph Processing: Current Issues & Our Objectives

Slow

Little parallelism

Specific

No/loose accuracy 
guarantees

Low accuracy

8



spcl.inf.ethz.ch

@spcl_eth

Large memory 
overheads

Wide applicability

Strong accuracy 
guarantees

Rich parallelism

Approximate Graph Processing: Current Issues & Our Objectives

Slow

Little parallelism

Specific

No/loose accuracy 
guarantees

Low accuracy

8



spcl.inf.ethz.ch

@spcl_eth

Large memory 
overheads

Wide applicability

Strong accuracy 
guarantees

High performance

Rich parallelism

Approximate Graph Processing: Current Issues & Our Objectives

Slow

Little parallelism

Specific

No/loose accuracy 
guarantees

Low accuracy

8



spcl.inf.ethz.ch

@spcl_eth

Large memory 
overheads

Wide applicability

Strong accuracy 
guarantees

High performance

Rich parallelism

Approximate Graph Processing: Current Issues & Our Objectives

Slow

Little parallelism

Specific

No/loose accuracy 
guarantees

High accuracyLow accuracy

8



spcl.inf.ethz.ch

@spcl_eth

Low & controllable 
memory overheads

Large memory 
overheads

Wide applicability

Strong accuracy 
guarantees

High performance

Rich parallelism

Approximate Graph Processing: Current Issues & Our Objectives

Slow

Little parallelism

Specific

No/loose accuracy 
guarantees

High accuracyLow accuracy

8



spcl.inf.ethz.ch

@spcl_eth

Low & controllable 
memory overheads

Large memory 
overheads

Wide applicability

Strong accuracy 
guarantees

High performance

Rich parallelism

Approximate Graph Processing: Current Issues & Our Objectives

Slow

Little parallelism

Specific

No/loose accuracy 
guarantees

High accuracyLow accuracy

How to achieve all these 
objectives in a single design?

8



spcl.inf.ethz.ch

@spcl_eth

Low & controllable 
memory overheads

Large memory 
overheads

Wide applicability

Strong accuracy 
guarantees

High performance

Rich parallelism

Approximate Graph Processing: Current Issues & Our Objectives

Slow

Little parallelism

Specific

No/loose accuracy 
guarantees

High accuracyLow accuracy

How to achieve all these 
objectives in a single design?

We develop ProbGraph: a graph 
representation that uses probabilistic 

set representations (aka sketches)

8



spcl.inf.ethz.ch

@spcl_eth

9

High-Level Approach Taken in ProbGraph



spcl.inf.ethz.ch

@spcl_eth

9

High-Level Approach Taken in ProbGraph

Keep the original graph



spcl.inf.ethz.ch

@spcl_eth

9

High-Level Approach Taken in ProbGraph

+

Keep the original graph

Maintain a very small 
“sketch” of a graph



spcl.inf.ethz.ch

@spcl_eth

9

High-Level Approach Taken in ProbGraph

+

Keep the original graph

Maintain a very small 
“sketch” of a graph

Use the sketch to answer
performance critical queries



spcl.inf.ethz.ch

@spcl_eth

9

High-Level Approach Taken in ProbGraph

+

Keep the original graph

Maintain a very small 
“sketch” of a graph

What design to use 
for the sketch, to 

satisfy all the goals?

Use the sketch to answer
performance critical queries



spcl.inf.ethz.ch

@spcl_eth

10

ProbGraph key idea: Use probabilistic set representations (set sketches)



spcl.inf.ethz.ch

@spcl_eth

10

A set = {A, B, C}

BA C

ProbGraph key idea: Use probabilistic set representations (set sketches)



spcl.inf.ethz.ch

@spcl_eth

10

A set = {A, B, C}

BA C

ProbGraph key idea: Use probabilistic set representations (set sketches)



spcl.inf.ethz.ch

@spcl_eth

10

A set = {A, B, C}

BA C

ProbGraph key idea: Use probabilistic set representations (set sketches)



spcl.inf.ethz.ch

@spcl_eth

10

A set = {A, B, C}

BA C

Bloom filters 
(BF) [1]

[1] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors”, CACM, 1970.
[2] A. Z. Broder, “On the resemblance and containment of documents”, IEEE SEQUENCES, 1997.
[3] Z. Bar-Yossef et al., “Counting distinct elements in a data stream”, in RANDOM, 2002.

MinHash [2]
K Minimum 
Values [3]

ProbGraph key idea: Use probabilistic set representations (set sketches)



spcl.inf.ethz.ch

@spcl_eth

10

A set = {A, B, C}

BA C

Bloom filters 
(BF) [1]

[1] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors”, CACM, 1970.
[2] A. Z. Broder, “On the resemblance and containment of documents”, IEEE SEQUENCES, 1997.
[3] Z. Bar-Yossef et al., “Counting distinct elements in a data stream”, in RANDOM, 2002.

MinHash [2]
K Minimum 
Values [3]

Less 
space

Faster operations

Accuracy 
loss

ProbGraph key idea: Use probabilistic set representations (set sketches)



spcl.inf.ethz.ch

@spcl_eth

10

A set = {A, B, C}

BA C

Bloom filters 
(BF) [1]

[1] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors”, CACM, 1970.
[2] A. Z. Broder, “On the resemblance and containment of documents”, IEEE SEQUENCES, 1997.
[3] Z. Bar-Yossef et al., “Counting distinct elements in a data stream”, in RANDOM, 2002.

MinHash [2]
K Minimum 
Values [3]

Less 
space

Faster operations

Accuracy 
loss

ProbGraph key idea: Use probabilistic set representations (set sketches)



spcl.inf.ethz.ch

@spcl_eth

10

Bloom Filters for Graph Mining

A set = {A, B, C}

BA C



spcl.inf.ethz.ch

@spcl_eth

Bloom filter BX of X

10

Bitvector of size BX [bits]

Bloom Filters for Graph Mining

A set = {A, B, C}

BA C



spcl.inf.ethz.ch

@spcl_eth

Bloom filter BX of X

10

Bitvector of size BX [bits] BX = 12

Bloom Filters for Graph Mining

A set = {A, B, C}

BA C



spcl.inf.ethz.ch

@spcl_eth

Bloom filter BX of X

10

Bitvector of size BX [bits]

Hash functions h1, ..., hb

hi : X → {1, …, BX}

BX = 12

Bloom Filters for Graph Mining

A set = {A, B, C}

BA C



spcl.inf.ethz.ch

@spcl_eth

Bloom filter BX of X

10

b = 2

Bitvector of size BX [bits]

h2, h1 : X → {1, …, 12}

Hash functions h1, ..., hb

hi : X → {1, …, BX}

BX = 12

Bloom Filters for Graph Mining

A set = {A, B, C}

BA C



spcl.inf.ethz.ch

@spcl_eth

Bloom filter BX of X

10

b = 2

Bitvector of size BX [bits]

h2, h1 : X → {1, …, 12}

Hash functions h1, ..., hb

hi : X → {1, …, BX}

BX = 12

h1(      ) = 3

h2(      ) = 5

Bloom Filters for Graph Mining

A set = {A, B, C}

BA C

A

A



spcl.inf.ethz.ch

@spcl_eth

Bloom filter BX of X

10

b = 2

Bitvector of size BX [bits]

h2, h1 : X → {1, …, 12}

Hash functions h1, ..., hb

hi : X → {1, …, BX}

BX = 12

h1(      ) = 3

h2(      ) = 5

Bloom Filters for Graph Mining

A set = {A, B, C}

BA C

A

A



spcl.inf.ethz.ch

@spcl_eth

Bloom filter BX of X

10

b = 2

Bitvector of size BX [bits]

h2, h1 : X → {1, …, 12}

Hash functions h1, ..., hb

hi : X → {1, …, BX}

BX = 12

h1(      ) = 3

h2(      ) = 5

h1( ) = 1

h2( ) = 8

Bloom Filters for Graph Mining

A set = {A, B, C}

BA C

A

A

B

B



spcl.inf.ethz.ch

@spcl_eth

Bloom filter BX of X

10

b = 2

Bitvector of size BX [bits]

h2, h1 : X → {1, …, 12}

Hash functions h1, ..., hb

hi : X → {1, …, BX}

BX = 12

h1(      ) = 3

h2(      ) = 5

h1( ) = 1

h2( ) = 8

Bloom Filters for Graph Mining

A set = {A, B, C}

BA C

A

A

B

B



spcl.inf.ethz.ch

@spcl_eth

Bloom filter BX of X

10

b = 2

Bitvector of size BX [bits]

h2, h1 : X → {1, …, 12}

Hash functions h1, ..., hb

hi : X → {1, …, BX}

BX = 12

h1(      ) = 3

h2(      ) = 5

h1( ) = 1

h2( ) = 8

h1( ) = 4

h2( ) = 11

Bloom Filters for Graph Mining

A set = {A, B, C}

BA C

A

A

B

B

C

C



spcl.inf.ethz.ch

@spcl_eth

Bloom filter BX of X

10

b = 2

Bitvector of size BX [bits]

h2, h1 : X → {1, …, 12}

Hash functions h1, ..., hb

hi : X → {1, …, BX}

BX = 12

h1(      ) = 3

h2(      ) = 5

h1( ) = 1

h2( ) = 8

h1( ) = 4

h2( ) = 11

Bloom Filters for Graph Mining

A set = {A, B, C}

BA C

A

A

B

B

C

C



spcl.inf.ethz.ch

@spcl_eth

11

u

Nu

Bloom Filters for Graph Mining



spcl.inf.ethz.ch

@spcl_eth

11

u

Nu

Each neighborhood 
Nu is a set of 

vertices

Bloom Filters for Graph Mining



spcl.inf.ethz.ch

@spcl_eth

11

u

Nu

Each neighborhood 
Nu is a set of 

vertices

Bloom Filters for Graph Mining



spcl.inf.ethz.ch

@spcl_eth

11

u

Nu

Each neighborhood 
Nu is a set of 

vertices
„Sketch” each Nu with a Bloom filter

Bloom Filters for Graph Mining



spcl.inf.ethz.ch

@spcl_eth

11

u

Nu

Each neighborhood 
Nu is a set of 

vertices
„Sketch” each Nu with a Bloom filter

Bloom Filters for Graph Mining



spcl.inf.ethz.ch

@spcl_eth

11

u

Nu

Each neighborhood 
Nu is a set of 

vertices
„Sketch” each Nu with a Bloom filter

Bloom Filters for Graph Mining



spcl.inf.ethz.ch

@spcl_eth

11

u

Nu

Each neighborhood 
Nu is a set of 

vertices
„Sketch” each Nu with a Bloom filter

Bloom Filters for Graph Mining



spcl.inf.ethz.ch

@spcl_eth

11

u

Nu

Each neighborhood 
Nu is a set of 

vertices
„Sketch” each Nu with a Bloom filter

Bloom Filters for Graph Mining



spcl.inf.ethz.ch

@spcl_eth

12

ProbGraph: Summary of Design



spcl.inf.ethz.ch

@spcl_eth

Input graph G

12

ProbGraph: Summary of Design

3

2
4

7
5

61

8



spcl.inf.ethz.ch

@spcl_eth

Standard graph representation (e.g., CSR)
Input graph G

12

ProbGraph: Summary of Design

3

2
4

7
5

61

8



spcl.inf.ethz.ch

@spcl_eth

Standard graph representation (e.g., CSR)
Input graph G

12

ProbGraph: Summary of Design

3

2
4

7
5

61

8

1 2 3

2 1 3 4

3 1 2 4 5 6

4 2 3 5

5 3 4 6 7 8

6 3 5 7

7 5 6 8

8 5 7



spcl.inf.ethz.ch

@spcl_eth

ProbGraph representation

13

ProbGraph: Summary of Design

1 2 3

2 1 3 4

3 1 2 4 5 6

4 2 3 5

5 3 4 6 7 8

6 3 5 7

7 5 6 8

8 5 7

Input graph G

3

2
4

7
5

61

8



spcl.inf.ethz.ch

@spcl_eth

ProbGraph representation

13

ProbGraph: Summary of Design

1 2 3

2 1 3 4

3 1 2 4 5 6

4 2 3 5

5 3 4 6 7 8

6 3 5 7

7 5 6 8

8 5 7

+

Input graph G

3

2
4

7
5

61

8

Bloom filters



spcl.inf.ethz.ch

@spcl_eth

ProbGraph representation

13

ProbGraph: Summary of Design

1 2 3

2 1 3 4

3 1 2 4 5 6

4 2 3 5

5 3 4 6 7 8

6 3 5 7

7 5 6 8

8 5 7

+

Larger BX : more accuracy & more 
storage required. Lower BX : vice versa. 

BX [bits]

Input graph G

3

2
4

7
5

61

8

Bloom filters



spcl.inf.ethz.ch

@spcl_eth

ProbGraph representation

13

ProbGraph: Summary of Design

1 2 3

2 1 3 4

3 1 2 4 5 6

4 2 3 5

5 3 4 6 7 8

6 3 5 7

7 5 6 8

8 5 7

+

Larger BX : more accuracy & more 
storage required. Lower BX : vice versa. 

BX [bits]

BX is often 
small 

little storage

Input graph G

3

2
4

7
5

61

8

Bloom filters



spcl.inf.ethz.ch

@spcl_eth

ProbGraph representation

13

ProbGraph: Summary of Design

1 2 3

2 1 3 4

3 1 2 4 5 6

4 2 3 5

5 3 4 6 7 8

6 3 5 7

7 5 6 8

8 5 7

+

Larger BX : more accuracy & more 
storage required. Lower BX : vice versa. 

BX [bits]

BX is often 
small 

little storage

BFs have the same 
size  great load 

balancing

Input graph G

3

2
4

7
5

61

8

Bloom filters



spcl.inf.ethz.ch

@spcl_eth

14

How does our idea compare to other Bloom filter use cases?



spcl.inf.ethz.ch

@spcl_eth

14

Traditional BF use case: presence tracking

How does our idea compare to other Bloom filter use cases?



spcl.inf.ethz.ch

@spcl_eth

Data stored somewhere

14

Traditional BF use case: presence tracking

How does our idea compare to other Bloom filter use cases?



spcl.inf.ethz.ch

@spcl_eth

Data stored somewhere

A BF cache tracking 
the presence of data

14

Traditional BF use case: presence tracking

How does our idea compare to other Bloom filter use cases?



spcl.inf.ethz.ch

@spcl_eth

Data stored somewhere

A BF cache tracking 
the presence of data

14

Traditional BF use case: presence tracking

How does our idea compare to other Bloom filter use cases?



spcl.inf.ethz.ch

@spcl_eth

Data stored somewhere

A BF cache tracking 
the presence of data

14

Traditional BF use case: presence tracking

How does our idea compare to other Bloom filter use cases?

Insert an element



spcl.inf.ethz.ch

@spcl_eth

Data stored somewhere

A BF cache tracking 
the presence of data

14

Traditional BF use case: presence tracking

How does our idea compare to other Bloom filter use cases?

Insert an element

Set the appropriate BF bits 



spcl.inf.ethz.ch

@spcl_eth

Data stored somewhere

A BF cache tracking 
the presence of data

14

Traditional BF use case: presence tracking

How does our idea compare to other Bloom filter use cases?

Insert an element

Set the appropriate BF bits 



spcl.inf.ethz.ch

@spcl_eth

Data stored somewhere

A BF cache tracking 
the presence of data

14

Traditional BF use case: presence tracking

How does our idea compare to other Bloom filter use cases?



spcl.inf.ethz.ch

@spcl_eth

Data stored somewhere

A BF cache tracking 
the presence of data

14

Traditional BF use case: presence tracking

How does our idea compare to other Bloom filter use cases?

Is the data in 
question over there?

Yes



spcl.inf.ethz.ch

@spcl_eth

Data stored somewhere

A BF cache tracking 
the presence of data

14

Traditional BF use case: presence tracking

How does our idea compare to other Bloom filter use cases?

Is the data in 
question over there?

Fetch the data

Yes



spcl.inf.ethz.ch

@spcl_eth

Data stored somewhere

A BF cache tracking 
the presence of data

14

Traditional BF use case: presence tracking

How does our idea compare to other Bloom filter use cases?

Is the data in 
question over there?

Fetch the data

This is usually a 
slow operation

Yes



spcl.inf.ethz.ch

@spcl_eth

Data stored somewhere

A BF cache tracking 
the presence of data

14

Traditional BF use case: presence tracking

How does our idea compare to other Bloom filter use cases?

Is the data in 
question over there?

Fetch the data

This is usually a 
slow operation

This is a very 
fast operation 

Yes



spcl.inf.ethz.ch

@spcl_eth

Data stored somewhere

A BF cache tracking 
the presence of data

14

Traditional BF use case: presence tracking

How does our idea compare to other Bloom filter use cases?

Is the data in 
question over there?

Fetch the data

This is usually a 
slow operation

This is a very 
fast operation 

Yes

The novelty of ProbGraph



spcl.inf.ethz.ch

@spcl_eth

Data stored somewhere

A BF cache tracking 
the presence of data

14

Traditional BF use case: presence tracking

How does our idea compare to other Bloom filter use cases?

Is the data in 
question over there?

Fetch the data

This is usually a 
slow operation

This is a very 
fast operation 

Yes

We use BFs as a sketch 
of the actual dataset

The novelty of ProbGraph



spcl.inf.ethz.ch

@spcl_eth

Data stored somewhere

A BF cache tracking 
the presence of data

14

Traditional BF use case: presence tracking

How does our idea compare to other Bloom filter use cases?

Is the data in 
question over there?

Fetch the data

This is usually a 
slow operation

This is a very 
fast operation 

Yes

We use BFs as a sketch 
of the actual dataset

The novelty of ProbGraph



spcl.inf.ethz.ch

@spcl_eth

Data stored somewhere

A BF cache tracking 
the presence of data

14

Traditional BF use case: presence tracking

How does our idea compare to other Bloom filter use cases?

Is the data in 
question over there?

Fetch the data

This is usually a 
slow operation

This is a very 
fast operation 

Yes

We use BFs as a sketch 
of the actual dataset

The novelty of ProbGraph

How do we exactly use these 
sketches to benefit graph mining?



spcl.inf.ethz.ch

@spcl_eth

15

Observation: Set Intersection Cardinality is Prevalent in Graph Mining



spcl.inf.ethz.ch

@spcl_eth

15

Observation: Set Intersection Cardinality is Prevalent in Graph Mining

│X ∩ Y│



spcl.inf.ethz.ch

@spcl_eth

15

Observation: Set Intersection Cardinality is Prevalent in Graph Mining

│X ∩ Y│



spcl.inf.ethz.ch

@spcl_eth

15

Observation: Set Intersection Cardinality is Prevalent in Graph Mining

│X ∩ Y│



spcl.inf.ethz.ch

@spcl_eth

15

Observation: Set Intersection Cardinality is Prevalent in Graph Mining

│X ∩ Y│

We greatly accelerate 
│X ∩ Y│ with BFs



spcl.inf.ethz.ch

@spcl_eth

16

ProbGraph key idea, continued



spcl.inf.ethz.ch

@spcl_eth

16

v

u

ProbGraph key idea, continued



spcl.inf.ethz.ch

@spcl_eth

16

v

u
Nu

Nv

ProbGraph key idea, continued



spcl.inf.ethz.ch

@spcl_eth

16

v

u
Nu

Nv

ProbGraph key idea, continued



spcl.inf.ethz.ch

@spcl_eth

16

v

u
Nu

Nv

ProbGraph key idea, continued



spcl.inf.ethz.ch

@spcl_eth

16

v

u
Nu

Nv

ProbGraph key idea, continued



spcl.inf.ethz.ch

@spcl_eth

16

v

u Bitwise 

AND

Nu

Nv

ProbGraph key idea, continued



spcl.inf.ethz.ch

@spcl_eth

16

v

u Bitwise 

AND

Nu

Nv

෣│Nu ∩ Nv│

ProbGraph key idea, continued



spcl.inf.ethz.ch

@spcl_eth

Low & controllable 
memory overheads

Large memory 
overheads

Wide applicability

Strong accuracy 
guarantees

High performance

Rich parallelism

Approximate Graph Processing: Our Objectives

Slow

Little parallelism

Specific

No/loose accuracy 
guarantees

High accuracyLow accuracy

17



spcl.inf.ethz.ch

@spcl_eth

Low & controllable 
memory overheads

Large memory 
overheads

Wide applicability

Strong accuracy 
guarantees

High performance

Rich parallelism

Approximate Graph Processing: Our Objectives

Slow

Little parallelism

Specific

No/loose accuracy 
guarantees

High accuracyLow accuracy

17



spcl.inf.ethz.ch

@spcl_eth

18

v

u
Nu

Nv

ProbGraph: Fast & Parallel Execution

Bitwise 

AND

෣│Nu ∩ Nv│



spcl.inf.ethz.ch

@spcl_eth

(different colors indicate 
different workers)

18

v

u
Nu

Nv

ProbGraph: Fast & Parallel Execution

Bitwise 

AND

෣│Nu ∩ Nv│



spcl.inf.ethz.ch

@spcl_eth

(different colors indicate 
different workers)

18

v

u
Nu

Nv

ProbGraph: Fast & Parallel Execution

Embarrassingly 
parallel, O(1) depth

Bitwise 

AND

෣│Nu ∩ Nv│



spcl.inf.ethz.ch

@spcl_eth

Low & controllable 
memory overheads

Large memory 
overheads

Wide applicability

Strong accuracy 
guarantees

High performance

Rich parallelism

Approximate Graph Processing: Our Objectives

Slow

Little parallelism

Specific

No/loose accuracy 
guarantees

High accuracyLow accuracy

19



spcl.inf.ethz.ch

@spcl_eth

Low & controllable 
memory overheads

Large memory 
overheads

Wide applicability

Strong accuracy 
guarantees

High performance

Rich parallelism

Approximate Graph Processing: Our Objectives

Slow

Little parallelism

Specific

No/loose accuracy 
guarantees

High accuracyLow accuracy

19



spcl.inf.ethz.ch

@spcl_eth

Low & controllable 
memory overheads

Large memory 
overheads

Wide applicability

Strong accuracy 
guarantees

High performance

Rich parallelism

Approximate Graph Processing: Our Objectives

Slow

Little parallelism

Specific

No/loose accuracy 
guarantees

High accuracyLow accuracy

19



spcl.inf.ethz.ch

@spcl_eth

Low & controllable 
memory overheads

Large memory 
overheads

Wide applicability

Strong accuracy 
guarantees

High performance

Rich parallelism

Approximate Graph Processing: Our Objectives

Slow

Little parallelism

Specific

No/loose accuracy 
guarantees

High accuracyLow accuracy

19

Let’s see 4 example 
use cases...



spcl.inf.ethz.ch

@spcl_eth

20

Which links 
will appear?

Which links 
are missing?

Use Case 1: Link Prediction



spcl.inf.ethz.ch

@spcl_eth

20

Which links 
will appear?

Which links 
are missing?

Use Case 1: Link Prediction



spcl.inf.ethz.ch

@spcl_eth

20

Which links 
will appear?

Which links 
are missing?

Use Case 1: Link Prediction



spcl.inf.ethz.ch

@spcl_eth

20

Which links 
will appear?

Which links 
are missing?

Use Case 1: Link Prediction
Fixing 

missing 
data

Predict 
future data



spcl.inf.ethz.ch

@spcl_eth

20

Which links 
will appear?

Which links 
are missing?

Use Case 1: Link Prediction
Fixing 

missing 
data

Predict 
future data



spcl.inf.ethz.ch

@spcl_eth

21

Use Case 2: Clique Counting



spcl.inf.ethz.ch

@spcl_eth

21

Use Case 2: Clique Counting



spcl.inf.ethz.ch

@spcl_eth

21

Use Case 2: Clique Counting

…



spcl.inf.ethz.ch

@spcl_eth

21

Use Case 2: Clique Counting

…

Learning over 
higher-order 

networks



spcl.inf.ethz.ch

@spcl_eth

22

# Clusters? 
Structure of 

clusters?

Use Case 3: Clustering



spcl.inf.ethz.ch

@spcl_eth

22

# Clusters? 
Structure of 

clusters?

Use Case 3: Clustering



spcl.inf.ethz.ch

@spcl_eth

22

# Clusters? 
Structure of 

clusters?

Use Case 3: Clustering

Minibatch selection in 
Graph Neural Networks



spcl.inf.ethz.ch

@spcl_eth

23

Use Case 4: Vertex Similarity



spcl.inf.ethz.ch

@spcl_eth

23

Use Case 4: Vertex Similarity



spcl.inf.ethz.ch

@spcl_eth

23

Use Case 4: Vertex Similarity

Enhancing graph 
embedding 

construction



spcl.inf.ethz.ch

@spcl_eth

23

Use Case 4: Vertex Similarity

Enhancing graph 
embedding 

construction



spcl.inf.ethz.ch

@spcl_eth

23

Use Case 4: Vertex Similarity

Enhancing graph 
embedding 

construction



spcl.inf.ethz.ch

@spcl_eth

Low & controllable 
memory overheads

Large memory 
overheads

Wide applicability

Strong accuracy 
guarantees

High performance

Rich parallelism

Approximate Graph Processing: Our Objectives

Slow

Little parallelism

Specific

No/loose accuracy 
guarantees

High accuracyLow accuracy

24



spcl.inf.ethz.ch

@spcl_eth

Low & controllable 
memory overheads

Large memory 
overheads

Wide applicability

Strong accuracy 
guarantees

High performance

Rich parallelism

Approximate Graph Processing: Our Objectives

Slow

Little parallelism

Specific

No/loose accuracy 
guarantees

High accuracyLow accuracy

24



spcl.inf.ethz.ch

@spcl_eth

Low & controllable 
memory overheads

Large memory 
overheads

Wide applicability

Strong accuracy 
guarantees

High performance

Rich parallelism

Approximate Graph Processing: Our Objectives

Slow

Little parallelism

Specific

No/loose accuracy 
guarantees

High accuracyLow accuracy

24



spcl.inf.ethz.ch

@spcl_eth

25

ProbGraph: Summary of Theoretical Results



spcl.inf.ethz.ch

@spcl_eth

25

ProbGraph: Summary of Theoretical Results

Wewant guarantees for
𝑃𝑟𝑜𝑏𝐺𝑟𝑎𝑝ℎ𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 − 𝑒𝑥𝑎𝑐𝑡𝑅𝑒𝑠𝑢𝑙𝑡



spcl.inf.ethz.ch

@spcl_eth

25

ProbGraph: Summary of Theoretical Results

Wewant guarantees for
𝑃𝑟𝑜𝑏𝐺𝑟𝑎𝑝ℎ𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 − 𝑒𝑥𝑎𝑐𝑡𝑅𝑒𝑠𝑢𝑙𝑡

We incorporate 
statistical theory of 

estimators



spcl.inf.ethz.ch

@spcl_eth

26

ProbGraph is asymptotically unbiased



spcl.inf.ethz.ch

@spcl_eth

26

ProbGraph is asymptotically unbiased

ProbGraph sketch size (storage needed)

Computation 
result



spcl.inf.ethz.ch

@spcl_eth

26

ProbGraph is asymptotically unbiased

ProbGraph sketch size (storage needed)

𝑒𝑥𝑎𝑐𝑡𝑅𝑒𝑠𝑢𝑙𝑡

Computation 
result



spcl.inf.ethz.ch

@spcl_eth

26

ProbGraph is asymptotically unbiased

ProbGraph sketch size (storage needed)

𝑒𝑥𝑎𝑐𝑡𝑅𝑒𝑠𝑢𝑙𝑡

𝐸 𝑃𝑟𝑜𝑏𝐺𝑟𝑎𝑝ℎ𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

Computation 
result



spcl.inf.ethz.ch

@spcl_eth

26

ProbGraph is asymptotically unbiased

ProbGraph sketch size (storage needed)

𝑒𝑥𝑎𝑐𝑡𝑅𝑒𝑠𝑢𝑙𝑡

The difference 
goes to zero

𝐸 𝑃𝑟𝑜𝑏𝐺𝑟𝑎𝑝ℎ𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

Computation 
result



spcl.inf.ethz.ch

@spcl_eth

26

ProbGraph is asymptotically unbiased

ProbGraph sketch size (storage needed)

𝑒𝑥𝑎𝑐𝑡𝑅𝑒𝑠𝑢𝑙𝑡

The difference 
goes to zero

𝐸 𝑃𝑟𝑜𝑏𝐺𝑟𝑎𝑝ℎ𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

Computation 
result

Zero average error at some point… 
but the variance can still go wild



spcl.inf.ethz.ch

@spcl_eth

26

ProbGraph is consistent

ProbGraph sketch size (storage needed)

𝑒𝑥𝑎𝑐𝑡𝑅𝑒𝑠𝑢𝑙𝑡

Computation 
result



spcl.inf.ethz.ch

@spcl_eth

26

ProbGraph is consistent

One can always find a 
ProbGraph sketch that 

delivers a required accuracy

ProbGraph sketch size (storage needed)

𝑒𝑥𝑎𝑐𝑡𝑅𝑒𝑠𝑢𝑙𝑡

Computation 
result



spcl.inf.ethz.ch

@spcl_eth

26

ProbGraph is consistent

One can always find a 
ProbGraph sketch that 

delivers a required accuracy
𝑃𝑟𝑜𝑏𝐺𝑟𝑎𝑝ℎ𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

ProbGraph sketch size (storage needed)

𝑒𝑥𝑎𝑐𝑡𝑅𝑒𝑠𝑢𝑙𝑡

Computation 
result



spcl.inf.ethz.ch

@spcl_eth

26

ProbGraph is consistent

One can always find a 
ProbGraph sketch that 

delivers a required accuracy
𝑃𝑟𝑜𝑏𝐺𝑟𝑎𝑝ℎ𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

The variance also converges to zero 
with the increasing sketch size

ProbGraph sketch size (storage needed)

𝑒𝑥𝑎𝑐𝑡𝑅𝑒𝑠𝑢𝑙𝑡

Computation 
result



spcl.inf.ethz.ch

@spcl_eth

26

ProbGraph is asymptotically efficient

ProbGraph sketch size (storage needed)

𝑒𝑥𝑎𝑐𝑡𝑅𝑒𝑠𝑢𝑙𝑡

Computation 
result



spcl.inf.ethz.ch

@spcl_eth

26

ProbGraph is asymptotically efficient

Other estimators
[1-8]

ProbGraph sketch size (storage needed)

𝑒𝑥𝑎𝑐𝑡𝑅𝑒𝑠𝑢𝑙𝑡

Computation 
result

[6] O. Papapetrou et al., “Cardinality estimation and dynamic length 
adaptation for bloom filters”, Distributed and Parallel Databases, 2010.

[5] R. Pagh et al., “Colorful triangle counting and a MapReduce
implementation”, Information Processing Letters, 2012.

[7] C. E. Tsourakakis et al., “Doulion: counting triangles in massive 
graphs with a coin”. ACM KDD. 2009.
[8] M. Besta et al., “Slim graph: Practical lossy graph 
compression for approximate graph processing, storage, and 
analytics”. ACM/IEEE SC. 2019

[1] J. Tetek, “Approximate triangle counting via sampling and fast matrix ˇ 
multiplication”, arXiv 2021.
[2] S. Assadi et al., “A simple sublinear-time algorithm for counting arbitrary 
subgraphs via edge sampling”, arXiv 2018.

[3] T. Eden et al., “Approximately counting triangles in sublinear time”, SIAM 
Journal on Computing, 2017.
[4] B. Bandyopadhyay et al., “Topological graph sketching for incremental 
and scalable analytics”, CIKM, 2016.



spcl.inf.ethz.ch

@spcl_eth

26

ProbGraph is asymptotically efficient

𝑃𝑟𝑜𝑏𝐺𝑟𝑎𝑝ℎ𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

Other estimators
[1-8]

ProbGraph sketch size (storage needed)

𝑒𝑥𝑎𝑐𝑡𝑅𝑒𝑠𝑢𝑙𝑡

Computation 
result

[6] O. Papapetrou et al., “Cardinality estimation and dynamic length 
adaptation for bloom filters”, Distributed and Parallel Databases, 2010.

[5] R. Pagh et al., “Colorful triangle counting and a MapReduce
implementation”, Information Processing Letters, 2012.

[7] C. E. Tsourakakis et al., “Doulion: counting triangles in massive 
graphs with a coin”. ACM KDD. 2009.
[8] M. Besta et al., “Slim graph: Practical lossy graph 
compression for approximate graph processing, storage, and 
analytics”. ACM/IEEE SC. 2019

[1] J. Tetek, “Approximate triangle counting via sampling and fast matrix ˇ 
multiplication”, arXiv 2021.
[2] S. Assadi et al., “A simple sublinear-time algorithm for counting arbitrary 
subgraphs via edge sampling”, arXiv 2018.

[3] T. Eden et al., “Approximately counting triangles in sublinear time”, SIAM 
Journal on Computing, 2017.
[4] B. Bandyopadhyay et al., “Topological graph sketching for incremental 
and scalable analytics”, CIKM, 2016.



spcl.inf.ethz.ch

@spcl_eth

26

ProbGraph is asymptotically efficient

𝑃𝑟𝑜𝑏𝐺𝑟𝑎𝑝ℎ𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

Other estimators
[1-8]

ProbGraph sketch size (storage needed)

𝑒𝑥𝑎𝑐𝑡𝑅𝑒𝑠𝑢𝑙𝑡

Computation 
result

[6] O. Papapetrou et al., “Cardinality estimation and dynamic length 
adaptation for bloom filters”, Distributed and Parallel Databases, 2010.

[5] R. Pagh et al., “Colorful triangle counting and a MapReduce
implementation”, Information Processing Letters, 2012.

[7] C. E. Tsourakakis et al., “Doulion: counting triangles in massive 
graphs with a coin”. ACM KDD. 2009.
[8] M. Besta et al., “Slim graph: Practical lossy graph 
compression for approximate graph processing, storage, and 
analytics”. ACM/IEEE SC. 2019

No other consistent estimator has 
lower MSE / variance

[1] J. Tetek, “Approximate triangle counting via sampling and fast matrix ˇ 
multiplication”, arXiv 2021.
[2] S. Assadi et al., “A simple sublinear-time algorithm for counting arbitrary 
subgraphs via edge sampling”, arXiv 2018.

[3] T. Eden et al., “Approximately counting triangles in sublinear time”, SIAM 
Journal on Computing, 2017.
[4] B. Bandyopadhyay et al., “Topological graph sketching for incremental 
and scalable analytics”, CIKM, 2016.



spcl.inf.ethz.ch

@spcl_eth

ProbGraph has strong concentration bounds

27



spcl.inf.ethz.ch

@spcl_eth

ProbGraph has strong concentration bounds

Deviation t from the real value
27



spcl.inf.ethz.ch

@spcl_eth

ProbGraph has strong concentration bounds

Deviation t from the real value

𝑃ሺȁ𝑃𝑟𝑜𝑏𝐺𝑟𝑎𝑝ℎ𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

27



spcl.inf.ethz.ch

@spcl_eth

ProbGraph has strong concentration bounds

Deviation t from the real value

𝑃ሺȁ𝑃𝑟𝑜𝑏𝐺𝑟𝑎𝑝ℎ𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

This probability decreases 
exponentially fast

27



spcl.inf.ethz.ch

@spcl_eth

This probability decreases 
exponentially fast

ProbGraph has strong concentration bounds

Deviation t from the real value

𝑃ሺȁ𝑃𝑟𝑜𝑏𝐺𝑟𝑎𝑝ℎ𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

ProbGraph is unlikely to 
deviate much from the 

true values

27



spcl.inf.ethz.ch

@spcl_eth

Low & controllable 
memory overheads

Large memory 
overheads

Wide applicability

Strong accuracy 
guarantees

High performance

Rich parallelism

Approximate Graph Processing: Our Objectives

Slow

Little parallelism

Specific

No/loose accuracy 
guarantees

High accuracyLow accuracy

28



spcl.inf.ethz.ch

@spcl_eth

Low & controllable 
memory overheads

Large memory 
overheads

Wide applicability

Strong accuracy 
guarantees

High performance

Rich parallelism

Approximate Graph Processing: Our Objectives

Slow

Little parallelism

Specific

No/loose accuracy 
guarantees

High accuracyLow accuracy

28



spcl.inf.ethz.ch

@spcl_eth

Low & controllable 
memory overheads

Large memory 
overheads

Wide applicability

Strong accuracy 
guarantees

High performance

Rich parallelism

Approximate Graph Processing: Our Objectives

Slow

Little parallelism

Specific

No/loose accuracy 
guarantees

High accuracyLow accuracy

28



spcl.inf.ethz.ch

@spcl_eth

29

Evaluation: Used Machines & Objectives



spcl.inf.ethz.ch

@spcl_eth

CSCS Cray Piz Daint,
64 GB per compute node

29

Evaluation: Used Machines & Objectives



spcl.inf.ethz.ch

@spcl_eth

Dell PowerEdge R910 server

CSCS Cray Piz Daint,
64 GB per compute node

29

Evaluation: Used Machines & Objectives



spcl.inf.ethz.ch

@spcl_eth

Dell PowerEdge R910 server

CSCS Cray Piz Daint,
64 GB per compute node

29

Evaluation: Used Machines & Objectives

Goal: One design with…
large speedups + 
small & controlled accuracy loss + 
small & controlled memory requirements



spcl.inf.ethz.ch

@spcl_eth

Considered Graph Datasets

30



spcl.inf.ethz.ch

@spcl_eth

Considered Graph Datasets

67 graph datasets, 
15 areas, 

5 major graph 
dataset repositories

30



spcl.inf.ethz.ch

@spcl_eth

Considered Graph Datasets

67 graph datasets, 
15 areas, 

5 major graph 
dataset repositories

Synthetic graphs

Real-world graphs

Kronecker [1]

Road nets

Communication
Social networks

Citation graphs

Web graphs

[2] P. Erdos and A. Renyi. On the evolution of random graphs. Pub. Math. Inst. Hun. A. Science. 1960.

Erdös-Rényi [2]

Gene functions

Brain structure

Economic nets

Compute graphs

ChemistryMathematics

Purchases

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.

Medicine

30



spcl.inf.ethz.ch

@spcl_eth

Considered Graph Datasets

67 graph datasets, 
15 areas, 

5 major graph 
dataset repositories

Synthetic graphs

Real-world graphs

Kronecker [1]

Road nets

Communication
Social networks

Citation graphs

Web graphs

[2] P. Erdos and A. Renyi. On the evolution of random graphs. Pub. Math. Inst. Hun. A. Science. 1960.

Erdös-Rényi [2]

Gene functions

Brain structure

Economic nets

Compute graphs

ChemistryMathematics

Purchases

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.

Medicine

Highly irregular data

Lots of load 
imbalance

30



spcl.inf.ethz.ch

@spcl_eth

31

Cores/threads: 32
Max memory 
overhead: 20%

Triangle Counting



spcl.inf.ethz.ch

@spcl_eth

31

Cores/threads: 32
Max memory 
overhead: 20%

Triangle Counting



spcl.inf.ethz.ch

@spcl_eth

31

Cores/threads: 32
Max memory 
overhead: 20%

Triangle Counting

Speedup over the exact tuned baseline
200



spcl.inf.ethz.ch

@spcl_eth

31

Cores/threads: 32
Max memory 
overhead: 20%

Triangle Counting

Speedup over the exact tuned baseline

A
cc

u
ra

cy
: R

el
at

iv
e 

co
u

n
t 

o
f 

a 
gi

ve
n

 p
at

te
rn

200

1

2

0



spcl.inf.ethz.ch

@spcl_eth

31

Cores/threads: 32
Max memory 
overhead: 20%

Triangle Counting

Speedup over the exact tuned baseline

A
cc

u
ra

cy
: R

el
at

iv
e 

co
u

n
t 

o
f 

a 
gi

ve
n

 p
at

te
rn

200

1

2

0

Each data point: the execution 
of a given scheme for a 

specific graph dataset



spcl.inf.ethz.ch

@spcl_eth

31

Cores/threads: 32
Max memory 
overhead: 20%

Triangle Counting

Speedup over the exact tuned baseline

A
cc

u
ra

cy
: R

el
at

iv
e 

co
u

n
t 

o
f 

a 
gi

ve
n

 p
at

te
rn

200

1

2

0

Each data point: the execution 
of a given scheme for a 

specific graph dataset

Exact 
baseline [1]

[1] S. Beamer et al., „The GAP Benchmark Suite”. 2015

1



spcl.inf.ethz.ch

@spcl_eth

31

Cores/threads: 32
Max memory 
overhead: 20%

Triangle Counting

Speedup over the exact tuned baseline

A
cc

u
ra

cy
: R

el
at

iv
e 

co
u

n
t 

o
f 

a 
gi

ve
n

 p
at

te
rn

200

1

2

0

ProbGraph

Each data point: the execution 
of a given scheme for a 

specific graph dataset

Exact 
baseline [1]

[1] S. Beamer et al., „The GAP Benchmark Suite”. 2015

1



spcl.inf.ethz.ch

@spcl_eth

31

Cores/threads: 32
Max memory 
overhead: 20%

Triangle Counting

Speedup over the exact tuned baseline

A
cc

u
ra

cy
: R

el
at

iv
e 

co
u

n
t 

o
f 

a 
gi

ve
n

 p
at

te
rn

200

1

2

0

ProbGraph

Each data point: the execution 
of a given scheme for a 

specific graph dataset

Heuristics, no formal 
guarantees [2]

Exact 
baseline [1]

[1] S. Beamer et al., „The GAP Benchmark Suite”. 2015

[2] S. Singh et al., “Scalable and performant graph processing on GPUs using 
approximate computing”. IEEE TMSCS. 2018

1



spcl.inf.ethz.ch

@spcl_eth

31

Cores/threads: 32
Max memory 
overhead: 20%

Triangle Counting

Speedup over the exact tuned baseline

A
cc

u
ra

cy
: R

el
at

iv
e 

co
u

n
t 

o
f 

a 
gi

ve
n

 p
at

te
rn

200

1

2

0

ProbGraph

Each data point: the execution 
of a given scheme for a 

specific graph dataset

Heuristics, no formal 
guarantees [2]

Exact 
baseline [1]

[1] S. Beamer et al., „The GAP Benchmark Suite”. 2015

Heuristics, formal 
guarantees [3-4]

[2] S. Singh et al., “Scalable and performant graph processing on GPUs using 
approximate computing”. IEEE TMSCS. 2018

[3] R. Pagh et al., “Colorful triangle counting and a mapreduce
implementation”. Information Processing Letters. 2012

[4] Z. Shang et al., “Auto-approximation of graph computing”. VLDB. 2014

1



spcl.inf.ethz.ch

@spcl_eth

31

Cores/threads: 32
Max memory 
overhead: 20%

Triangle Counting

Speedup over the exact tuned baseline

A
cc

u
ra

cy
: R

el
at

iv
e 

co
u

n
t 

o
f 

a 
gi

ve
n

 p
at

te
rn

200

1

2

0

ProbGraph

Each data point: the execution 
of a given scheme for a 

specific graph dataset

Heuristics, no formal 
guarantees [2]

Exact 
baseline [1]

[1] S. Beamer et al., „The GAP Benchmark Suite”. 2015

Heuristics, formal 
guarantees [3-4]

[2] S. Singh et al., “Scalable and performant graph processing on GPUs using 
approximate computing”. IEEE TMSCS. 2018

[3] R. Pagh et al., “Colorful triangle counting and a mapreduce
implementation”. Information Processing Letters. 2012

Lossy graph 
compression [5-6]

[5] C. E. Tsourakakis et al., “Doulion: counting triangles in massive graphs 
with a coin”. ACM KDD. 2009.

[4] Z. Shang et al., “Auto-approximation of graph computing”. VLDB. 2014

[6] M. Besta et al., “Slim graph: Practical lossy graph compression for 
approximate graph processing, storage, and analytics”. ACM/IEEE SC. 2019

1



spcl.inf.ethz.ch

@spcl_eth

31

Cores/threads: 32
Max memory 
overhead: 20%

Triangle Counting

Speedup over the exact tuned baseline

A
cc

u
ra

cy
: R

el
at

iv
e 

co
u

n
t 

o
f 

a 
gi

ve
n

 p
at

te
rn

200

1

2

0

For most graphs, we have...

...very high speedups
ProbGraph

Each data point: the execution 
of a given scheme for a 

specific graph dataset

Heuristics, no formal 
guarantees [2]

Exact 
baseline [1]

[1] S. Beamer et al., „The GAP Benchmark Suite”. 2015

Heuristics, formal 
guarantees [3-4]

[2] S. Singh et al., “Scalable and performant graph processing on GPUs using 
approximate computing”. IEEE TMSCS. 2018

[3] R. Pagh et al., “Colorful triangle counting and a mapreduce
implementation”. Information Processing Letters. 2012

Lossy graph 
compression [5-6]

[5] C. E. Tsourakakis et al., “Doulion: counting triangles in massive graphs 
with a coin”. ACM KDD. 2009.

[4] Z. Shang et al., “Auto-approximation of graph computing”. VLDB. 2014

[6] M. Besta et al., “Slim graph: Practical lossy graph compression for 
approximate graph processing, storage, and analytics”. ACM/IEEE SC. 2019

1



spcl.inf.ethz.ch

@spcl_eth

31

Cores/threads: 32
Max memory 
overhead: 20%

Triangle Counting

Speedup over the exact tuned baseline

A
cc

u
ra

cy
: R

el
at

iv
e 

co
u

n
t 

o
f 

a 
gi

ve
n

 p
at

te
rn

200

1

2

0

For most graphs, we have...

...very high speedups

...very good accuracy
ProbGraph

Each data point: the execution 
of a given scheme for a 

specific graph dataset

Heuristics, no formal 
guarantees [2]

Exact 
baseline [1]

[1] S. Beamer et al., „The GAP Benchmark Suite”. 2015

Heuristics, formal 
guarantees [3-4]

[2] S. Singh et al., “Scalable and performant graph processing on GPUs using 
approximate computing”. IEEE TMSCS. 2018

[3] R. Pagh et al., “Colorful triangle counting and a mapreduce
implementation”. Information Processing Letters. 2012

Lossy graph 
compression [5-6]

[5] C. E. Tsourakakis et al., “Doulion: counting triangles in massive graphs 
with a coin”. ACM KDD. 2009.

[4] Z. Shang et al., “Auto-approximation of graph computing”. VLDB. 2014

[6] M. Besta et al., “Slim graph: Practical lossy graph compression for 
approximate graph processing, storage, and analytics”. ACM/IEEE SC. 2019

1

80% accuracy



spcl.inf.ethz.ch

@spcl_eth

31

Cores/threads: 32
Max memory 
overhead: 20%

Triangle Counting

Speedup over the exact tuned baseline

A
cc

u
ra

cy
: R

el
at

iv
e 

co
u

n
t 

o
f 

a 
gi

ve
n

 p
at

te
rn

200

1

2

0

For most graphs, we have...

...very high speedups

...very good accuracy

...mild memory requirements 

ProbGraph

Each data point: the execution 
of a given scheme for a 

specific graph dataset

Heuristics, no formal 
guarantees [2]

Exact 
baseline [1]

[1] S. Beamer et al., „The GAP Benchmark Suite”. 2015

Heuristics, formal 
guarantees [3-4]

[2] S. Singh et al., “Scalable and performant graph processing on GPUs using 
approximate computing”. IEEE TMSCS. 2018

[3] R. Pagh et al., “Colorful triangle counting and a mapreduce
implementation”. Information Processing Letters. 2012

Lossy graph 
compression [5-6]

[5] C. E. Tsourakakis et al., “Doulion: counting triangles in massive graphs 
with a coin”. ACM KDD. 2009.

[4] Z. Shang et al., “Auto-approximation of graph computing”. VLDB. 2014

[6] M. Besta et al., “Slim graph: Practical lossy graph compression for 
approximate graph processing, storage, and analytics”. ACM/IEEE SC. 2019

1

80% accuracy



spcl.inf.ethz.ch

@spcl_eth

32

Cores/threads: 32
Max memory 
overhead: 20%

4-Clique Counting

Speedup over the exact tuned baseline

A
cc

u
ra

cy
: R

el
at

iv
e 

co
u

n
t 

o
f 

a 
gi

ve
n

 p
at

te
rn

250

0.5

1.0

0

ProbGraph
Exact 

baseline [1]

[1] based on S. Beamer et al., „The GAP Benchmark Suite”. 2015

For most graphs, we have...

...very high speedups

...very good accuracy

...mild memory requirements 
50

Each data point: the execution 
of a given scheme for a 

specific graph dataset



spcl.inf.ethz.ch

@spcl_eth

32

Cores/threads: 32
Max memory 
overhead: 20%

4-Clique Counting

Speedup over the exact tuned baseline

A
cc

u
ra

cy
: R

el
at

iv
e 

co
u

n
t 

o
f 

a 
gi

ve
n

 p
at

te
rn

250

0.5

1.0

0

ProbGraph
Exact 

baseline [1]

[1] based on S. Beamer et al., „The GAP Benchmark Suite”. 2015

For most graphs, we have...

...very high speedups

...very good accuracy

...mild memory requirements 
50

Each data point: the execution 
of a given scheme for a 

specific graph dataset

90% accuracy



spcl.inf.ethz.ch

@spcl_eth

Max memory 
overhead: 20%

Clustering (Scaling)

[1] S. Beamer et al., „The GAP Benchmark Suite”. 2015
[2] R. Pagh et al., “Colorful triangle counting and a mapreduce
implementation”. Information Processing Letters. 2012
[3] C. E. Tsourakakis et al., “Doulion: counting triangles in massive graphs 
with a coin”. ACM KDD. 2009.
[4] M. Besta et al., “Slim graph: Practical lossy graph compression for 
approximate graph processing, storage, and analytics”. ACM/IEEE SC. 2019

Exact scheme [1]

Compression [3-4]
Heuristics [2]

ProbGraph (A)
ProbGraph (B)

33



spcl.inf.ethz.ch

@spcl_eth

100

101

102

103

Max memory 
overhead: 20%

Clustering (Scaling)

[1] S. Beamer et al., „The GAP Benchmark Suite”. 2015
[2] R. Pagh et al., “Colorful triangle counting and a mapreduce
implementation”. Information Processing Letters. 2012
[3] C. E. Tsourakakis et al., “Doulion: counting triangles in massive graphs 
with a coin”. ACM KDD. 2009.
[4] M. Besta et al., “Slim graph: Practical lossy graph compression for 
approximate graph processing, storage, and analytics”. ACM/IEEE SC. 2019

Exact scheme [1]

Compression [3-4]
Heuristics [2]

ProbGraph (A)
ProbGraph (B)

R
u

n
ti

m
e 

[s
]

33

20 21 22 23 24 25

# Workers



spcl.inf.ethz.ch

@spcl_eth

100

101

102

103

Max memory 
overhead: 20%

Clustering (Scaling)

[1] S. Beamer et al., „The GAP Benchmark Suite”. 2015
[2] R. Pagh et al., “Colorful triangle counting and a mapreduce
implementation”. Information Processing Letters. 2012
[3] C. E. Tsourakakis et al., “Doulion: counting triangles in massive graphs 
with a coin”. ACM KDD. 2009.
[4] M. Besta et al., “Slim graph: Practical lossy graph compression for 
approximate graph processing, storage, and analytics”. ACM/IEEE SC. 2019

Exact scheme [1]

Compression [3-4]
Heuristics [2]

ProbGraph (A)
ProbGraph (B)

R
u

n
ti

m
e 

[s
]

33

20 21 22 23 24 25

Graph densities

22 24 26 28 210 212

# Workers



spcl.inf.ethz.ch

@spcl_eth

100

101

102

103

Max memory 
overhead: 20%

Clustering (Scaling)

[1] S. Beamer et al., „The GAP Benchmark Suite”. 2015
[2] R. Pagh et al., “Colorful triangle counting and a mapreduce
implementation”. Information Processing Letters. 2012
[3] C. E. Tsourakakis et al., “Doulion: counting triangles in massive graphs 
with a coin”. ACM KDD. 2009.
[4] M. Besta et al., “Slim graph: Practical lossy graph compression for 
approximate graph processing, storage, and analytics”. ACM/IEEE SC. 2019

Exact scheme [1]

Compression [3-4]
Heuristics [2]

ProbGraph (A)
ProbGraph (B)

R
u

n
ti

m
e 

[s
]

33

20 21 22 23 24 25

Graph densities

22 24 26 28 210 212

# Workers

…



spcl.inf.ethz.ch

@spcl_eth

100

101

102

103

Max memory 
overhead: 20%

Clustering (Scaling)

[1] S. Beamer et al., „The GAP Benchmark Suite”. 2015
[2] R. Pagh et al., “Colorful triangle counting and a mapreduce
implementation”. Information Processing Letters. 2012
[3] C. E. Tsourakakis et al., “Doulion: counting triangles in massive graphs 
with a coin”. ACM KDD. 2009.
[4] M. Besta et al., “Slim graph: Practical lossy graph compression for 
approximate graph processing, storage, and analytics”. ACM/IEEE SC. 2019

Exact scheme [1]

Compression [3-4]
Heuristics [2]

ProbGraph (A)
ProbGraph (B)

R
u

n
ti

m
e 

[s
]

33

20 21 22 23 24 25

Graph densities

22 24 26 28 210 212

# Workers

…



spcl.inf.ethz.ch

@spcl_eth

100

101

102

103

Max memory 
overhead: 20%

Clustering (Scaling)

[1] S. Beamer et al., „The GAP Benchmark Suite”. 2015
[2] R. Pagh et al., “Colorful triangle counting and a mapreduce
implementation”. Information Processing Letters. 2012
[3] C. E. Tsourakakis et al., “Doulion: counting triangles in massive graphs 
with a coin”. ACM KDD. 2009.
[4] M. Besta et al., “Slim graph: Practical lossy graph compression for 
approximate graph processing, storage, and analytics”. ACM/IEEE SC. 2019

Exact scheme [1]

Compression [3-4]
Heuristics [2]

ProbGraph (A)
ProbGraph (B)

R
u

n
ti

m
e 

[s
]

33

20 21 22 23 24 25

Graph densities

22 24 26 28 210 212

# Workers



spcl.inf.ethz.ch

@spcl_eth

100

101

102

103

Max memory 
overhead: 20%

Clustering (Scaling)

[1] S. Beamer et al., „The GAP Benchmark Suite”. 2015
[2] R. Pagh et al., “Colorful triangle counting and a mapreduce
implementation”. Information Processing Letters. 2012
[3] C. E. Tsourakakis et al., “Doulion: counting triangles in massive graphs 
with a coin”. ACM KDD. 2009.
[4] M. Besta et al., “Slim graph: Practical lossy graph compression for 
approximate graph processing, storage, and analytics”. ACM/IEEE SC. 2019

Exact scheme [1]

Compression [3-4]
Heuristics [2]

ProbGraph (A)
ProbGraph (B)
Ideal scaling (B)

R
u

n
ti

m
e 

[s
]

Why do we scale 
so well?

33

20 21 22 23 24 25

Graph densities

22 24 26 28 210 212

# Workers



spcl.inf.ethz.ch

@spcl_eth

100

101

102

103

Max memory 
overhead: 20%

Clustering (Scaling)

[1] S. Beamer et al., „The GAP Benchmark Suite”. 2015
[2] R. Pagh et al., “Colorful triangle counting and a mapreduce
implementation”. Information Processing Letters. 2012
[3] C. E. Tsourakakis et al., “Doulion: counting triangles in massive graphs 
with a coin”. ACM KDD. 2009.
[4] M. Besta et al., “Slim graph: Practical lossy graph compression for 
approximate graph processing, storage, and analytics”. ACM/IEEE SC. 2019

Exact scheme [1]

Compression [3-4]
Heuristics [2]

ProbGraph (A)
ProbGraph (B)
Ideal scaling (B)

R
u

n
ti

m
e 

[s
]

Why do we scale 
so well?

Great load balancing 
properties

33

20 21 22 23 24 25

Graph densities

22 24 26 28 210 212

# Workers



spcl.inf.ethz.ch

@spcl_eth

ProbGraph representation

1 2 3
2 1 3 4
3 1 2 4 5 6
4 2 3 5
5 3 4 6 7 8
6 3 5 7
7 5 6 8
8 5 7

+

Bloom 
filters

34



spcl.inf.ethz.ch

@spcl_eth

ProbGraph representation

1 2 3
2 1 3 4
3 1 2 4 5 6
4 2 3 5
5 3 4 6 7 8
6 3 5 7
7 5 6 8
8 5 7

+

Bloom 
filters

2 3

5 7

5 6 8

5 7

1 2 4 5 6

3 4 6 7 8

2 3 5

5 6 8

∩ ∩

∩ ∩
34



spcl.inf.ethz.ch

@spcl_eth

ProbGraph representation

1 2 3
2 1 3 4
3 1 2 4 5 6
4 2 3 5
5 3 4 6 7 8
6 3 5 7
7 5 6 8
8 5 7

35

∩ ∩

∩ ∩

Bloom 
filters

+



spcl.inf.ethz.ch

@spcl_eth

36

...Many more data & a lot of strong theory results!



spcl.inf.ethz.ch

@spcl_eth

Low & controllable 
memory overheads

Large memory 
overheads

Wide applicability

Strong accuracy 
guarantees

High performance

Rich parallelism

Approximate Graph Processing: Our Objectives

Slow

Little parallelism

Specific

No/loose accuracy 
guarantees

High accuracyLow accuracy

37



spcl.inf.ethz.ch

@spcl_eth

Low & controllable 
memory overheads

Large memory 
overheads

Wide applicability

Strong accuracy 
guarantees

High performance

Rich parallelism

Approximate Graph Processing: Our Objectives

Slow

Little parallelism

Specific

No/loose accuracy 
guarantees

High accuracyLow accuracy

37



spcl.inf.ethz.ch

@spcl_eth

Low & controllable 
memory overheads

Wide applicability

Strong accuracy 
guarantees

High performance

Rich parallelism

Conclusion: ProbGraph Enables Approximate Graph Mining with... 

High accuracy



spcl.inf.ethz.ch

@spcl_eth

Low & controllable 
memory overheads

Wide applicability

Strong accuracy 
guarantees

High performance

Rich parallelism

Conclusion: ProbGraph Enables Approximate Graph Mining with... 

High accuracy



spcl.inf.ethz.ch

@spcl_eth

Low & controllable 
memory overheads

Wide applicability

Strong accuracy 
guarantees

High performance

Rich parallelism

Conclusion: ProbGraph Enables Approximate Graph Mining with... 

High accuracy

Thank you



spcl.inf.ethz.ch

@spcl_eth

Low & controllable 
memory overheads

Wide applicability

Strong accuracy 
guarantees

High performance

Rich parallelism

Conclusion: ProbGraph Enables Approximate Graph Mining with... 

High accuracy

Thank you



spcl.inf.ethz.ch

@spcl_eth

Low & controllable 
memory overheads

Wide applicability

Strong accuracy 
guarantees

High performance

Rich parallelism

Conclusion: ProbGraph Enables Approximate Graph Mining with... 

High accuracy

Backup slides


