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often O(nk) for k ≥ 2
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How to achieve all these 
objectives in a single design?

We develop ProbGraph: a graph 
representation that uses probabilistic 

set representations (aka sketches)
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Keep the original graph

Maintain a very small 
“sketch” of a graph

What design to use 
for the sketch, to 

satisfy all the goals?

Use the sketch to answer
performance critical queries
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How does our idea compare to other Bloom filter use cases?

Is the data in 
question over there?

Fetch the data

This is usually a 
slow operation

This is a very 
fast operation 

Yes

We use BFs as a sketch 
of the actual dataset

The novelty of ProbGraph

How do we exactly use these 
sketches to benefit graph mining?
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│X ∩ Y│

We greatly accelerate 
│X ∩ Y│ with BFs



spcl.inf.ethz.ch

@spcl_eth

16

ProbGraph key idea, continued



spcl.inf.ethz.ch

@spcl_eth

16

v

u

ProbGraph key idea, continued



spcl.inf.ethz.ch

@spcl_eth

16

v

u
Nu

Nv

ProbGraph key idea, continued



spcl.inf.ethz.ch

@spcl_eth

16

v

u
Nu

Nv

ProbGraph key idea, continued



spcl.inf.ethz.ch

@spcl_eth

16

v

u
Nu

Nv

ProbGraph key idea, continued



spcl.inf.ethz.ch

@spcl_eth

16

v

u
Nu

Nv

ProbGraph key idea, continued



spcl.inf.ethz.ch

@spcl_eth

16

v

u Bitwise 

AND

Nu

Nv

ProbGraph key idea, continued



spcl.inf.ethz.ch

@spcl_eth

16

v

u Bitwise 

AND

Nu

Nv

෣│Nu ∩ Nv│

ProbGraph key idea, continued



spcl.inf.ethz.ch

@spcl_eth

Low & controllable 
memory overheads

Large memory 
overheads

Wide applicability

Strong accuracy 
guarantees

High performance

Rich parallelism

Approximate Graph Processing: Our Objectives

Slow

Little parallelism

Specific

No/loose accuracy 
guarantees

High accuracyLow accuracy

17



spcl.inf.ethz.ch

@spcl_eth

Low & controllable 
memory overheads

Large memory 
overheads

Wide applicability

Strong accuracy 
guarantees

High performance

Rich parallelism

Approximate Graph Processing: Our Objectives

Slow

Little parallelism

Specific

No/loose accuracy 
guarantees

High accuracyLow accuracy

17



spcl.inf.ethz.ch

@spcl_eth

18

v

u
Nu

Nv

ProbGraph: Fast & Parallel Execution

Bitwise 

AND

෣│Nu ∩ Nv│



spcl.inf.ethz.ch

@spcl_eth

(different colors indicate 
different workers)

18

v

u
Nu

Nv

ProbGraph: Fast & Parallel Execution

Bitwise 

AND

෣│Nu ∩ Nv│



spcl.inf.ethz.ch

@spcl_eth

(different colors indicate 
different workers)

18

v

u
Nu

Nv

ProbGraph: Fast & Parallel Execution

Embarrassingly 
parallel, O(1) depth
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Let’s see 4 example 
use cases...
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Use Case 2: Clique Counting

…

Learning over 
higher-order 

networks
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# Clusters? 
Structure of 

clusters?

Use Case 3: Clustering

Minibatch selection in 
Graph Neural Networks
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Wewant guarantees for
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We incorporate 
statistical theory of 

estimators
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Zero average error at some point… 
but the variance can still go wild
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[6] O. Papapetrou et al., “Cardinality estimation and dynamic length 
adaptation for bloom filters”, Distributed and Parallel Databases, 2010.

[5] R. Pagh et al., “Colorful triangle counting and a MapReduce
implementation”, Information Processing Letters, 2012.

[7] C. E. Tsourakakis et al., “Doulion: counting triangles in massive 
graphs with a coin”. ACM KDD. 2009.
[8] M. Besta et al., “Slim graph: Practical lossy graph 
compression for approximate graph processing, storage, and 
analytics”. ACM/IEEE SC. 2019

[1] J. Tetek, “Approximate triangle counting via sampling and fast matrix ˇ 
multiplication”, arXiv 2021.
[2] S. Assadi et al., “A simple sublinear-time algorithm for counting arbitrary 
subgraphs via edge sampling”, arXiv 2018.

[3] T. Eden et al., “Approximately counting triangles in sublinear time”, SIAM 
Journal on Computing, 2017.
[4] B. Bandyopadhyay et al., “Topological graph sketching for incremental 
and scalable analytics”, CIKM, 2016.
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Deviation t from the real value

𝑃ሺȁ𝑃𝑟𝑜𝑏𝐺𝑟𝑎𝑝ℎ𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

ProbGraph is unlikely to 
deviate much from the 

true values
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Evaluation: Used Machines & Objectives

Goal: One design with…
large speedups + 
small & controlled accuracy loss + 
small & controlled memory requirements



spcl.inf.ethz.ch

@spcl_eth

Considered Graph Datasets

30



spcl.inf.ethz.ch

@spcl_eth

Considered Graph Datasets

67 graph datasets, 
15 areas, 

5 major graph 
dataset repositories

30



spcl.inf.ethz.ch

@spcl_eth

Considered Graph Datasets

67 graph datasets, 
15 areas, 

5 major graph 
dataset repositories

Synthetic graphs

Real-world graphs

Kronecker [1]

Road nets

Communication
Social networks

Citation graphs

Web graphs
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Erdös-Rényi [2]

Gene functions

Brain structure

Economic nets

Compute graphs

ChemistryMathematics

Purchases

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.

Medicine

Highly irregular data

Lots of load 
imbalance
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Each data point: the execution 
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specific graph dataset

Heuristics, no formal 
guarantees [2]
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