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Abstract. This paper introduces Netgauge, an extensible open-source
framework for implementing network benchmarks. The structure of Net-
gauge abstracts and explicitly separates communication patterns from
communication modules. As a result of this separation of concerns, new
benchmark types and new network protocols can be added independently
to Netgauge. We describe the rich set of pre-defined communication pat-
terns and communication modules that are available in the current dis-
tribution. Benchmark results demonstrate the applicability of the cur-
rent Netgauge distribution to to different networks. An assortment of
use-cases is used to investigate the implementation quality of selected
protocols and protocol layers.

1 Introduction

Network performance measurement and monitoring plays an important role in
High Performance Computing (HPC). For many different network protocols and
interconnects, numerous tools are available to perform functionality and correct-
ness tests and also benchmark two fundamental network parameters (i.e., latency
and bandwidth) . While these features are generally useful for system admin-
istrators and end users, for high-end performance tuning, the HPC community
usually demands more detailed insight into the network.

To satisfy the demands of application and middleware developers, it is often
necessary to investigate specific aspects of the network or to analyze different
communication patterns. The simplest measurement method is a “ping-pong”
benchmark where the sender sends a message to a server and the server sim-
ply reflects this message back. The time from the send to the receive on the
sender is called Round Trip Time (RTT) and plays an important role in HPC.
Another benchmark pattern, called ping-ping, can be used to analyze pipelining
effects in the network (cf. Pallas Microbenchmarks [1]). However, more compli-
cated communication patterns are necessary to simulate different communication
situations, such as one-to-many or many-to-one patterns to analyze congestion
situations.

The most advanced network benchmarks are parametrizing network models,
such as LogP [2], LogGP [3] or pLogP [4]. These require special measurement
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methods such as described in [4–7]. Those models can be used to predict the
running time of parallel algorithms. The LogP model family can also be used
to predict the potential to overlap communication and computation for different
network protocols (cf. Bell et al. [7]).

1.1 Related Work

Existing portable tools, such as netperf or iperf, can readily measure network
latency and bandwidth. However, it is often necessary to measure other network
parameters (e.g., CPU overhead to assess the potential for computation and com-
munication overlap or performance in threaded environments). Such parameters
can be measured, but the tools to do so are generally specific either to the pa-
rameter or hardware being measured. HUNT[8], White’s implementation[9] and
COMB[10] are able to assess the overlap potential of different network proto-
cols. Other tools like Netpipe [11, 12] simply benchmark latency and bandwidth
for many different interconnection benchmarks. Another interesting tool named
coNCePTuaL [13, 14] can be used to express arbitrary communication patterns,
but the support for different low-level networks is limited and the addition of
new networks is rather complicated. The MIBA [15] tool reports a number of
different detailed timings, but is specific to the InfiniBand network.

Our work combines the advantages of previous work and enables users to
easily implement their own communication patterns and use low-level communi-
cation modules to benchmark different network stacks in a comparable way. The
interface of the communication modules is kept as simple as possible to ensure
an easy addition of new networks or protocols.

1.2 Challenges and Contributions

After presenting a motivation and an overview about related projects, we will
discuss the challenges we faced in the design and implementation phase and then
highlight the main contributions of our project to the scientific community.

Challenges

The biggest challenge we faced was to design a single interface between the
communication layer and the benchmark layer that supports many different
communication networks. A main distinction has to be made between one-sided
protocols where the sender writes directly into the passive receiver’s memory
and two-sided communication where the receiver fully takes part in the commu-
nication. Other issues come up when networks with special requirements, (i.e.,
the communication-memory must be registered before any communication can
take place) need to be supported. We describe our methodology to deal with the
unification of those different interfaces and networks into a single simple-to-use
interface that supports easy addition of new benchmark patters. Therefore, we
avoid all semantics that are not required for our benchmarking purposes (such
as message tagging), even though they may be helpful or even required for real
parallel applications. Furthermore, in order to reflect real-world applications as
accurately as possible, the benchmark implementor must be able to “simulate”
application behavior in his implementation by using the abstract communication
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interface provided. Portability is achieved by limiting the number of external de-
pendencies. Thus, Netgauge is written in plain C and needs only MPI (a portable
MPI implementation is available with Open MPI [16]).

Contributions

Our main contribution to the scientific community is the design and imple-
mentation of an abstract interface to separate the communication part from the
benchmark part in a network benchmark. We show that our framework is able to
support many different kinds of network benchmarks (including those that sim-
ulate applications). The interface is kept as simple as possible to allow an easy
addition of benchmarks (for researchers interested in performance of applica-
tions or communication algorithms) or communication modules (for researchers
interested in the performance of a particular network or hardware, e.g., different
parameters).

Merging those two groups makes Netgauge a useful tool for research. For
example, if a new network has to be tested, the researcher needs only imple-
ment a communication module and will then immediately have all benchmarks
available, including network parameter assessment of well-know network models,
flow control tests and, of course, also the simple latency and bandwidth tests.
Another scenario supports more theoretical research in network modeling. If a
new network model is designed, the researcher simply implements the parame-
ter assessment routine as a benchmark and thus measures the parameters for all
networks supported by Netgauge.

The current version of Netgauge ships support for many communication net-
works and benchmark algorithms that can be used as templates for the addition
of new modules. Netgauge also offers an abstract timer interface which is able
to support system-dependent high-performance timers (e.g., RDTSC [17]) to
enable very accurate time measurements.

2 The Performance Measurement Framework

Netgauge uses a component architecture [18] similar to LAM/MPI or Open
MPI which consists of different “frameworks”. A framework defines a particular
interface to the user or other frameworks and a “module” is a specific instance
of a framework.

Fig. 1 shows the overall structure of Netgauge. Different types of benchmarks
are implemented in the “pattern” framework. The low-level communication layer
is represented by the “communication” framework. The pattern implementor is
free to use the functionality offered by the communication framework to im-
plement any benchmark pattern. The communication framework abstracts the
different network types. Netgauge currently supports a simplified two-sided in-
terface similar to MPI. This interface assures an easy implementation of new
communication modules.

2.1 The Pattern Framework

The pattern framework is the the core of every benchmark with Netgauge. A
pattern interface is very simple and consists of a name for the pattern, a short
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Fig. 1. Netgauge Framework Structure

description, the requirement flags and a benchmark function pointer. The user
selects a specific pattern via the command line and Netgauge checks that the
communication module supports all requirements indicated by the pattern’s flags
(e.g., if the pattern requires non-blocking communication). If so, Netgauge calls
the specified module’s benchmark function and passes a reference to the user-
selected communication module.

2.2 The Communication Framework

The communication framework is used by the user-selected pattern module to
benchmark the communication operations. The framework interface contains a
name, a short description, flags and different communication functions. A module
can also indicate a maximum message-size (e.g., for UDP) and how many bytes
it adds as additional header (e.g., for RAW Ethernet). Different module flags
indicate if the module offers reliable transport, channel semantics and/or requires
memory registration. Optional init(), shutdown() and getopt() functions can
be offered to initialize, shut the module down or read additional module-specific
command line options. All optional function-pointers may be set to NULL which
means that the module does not offer this functionality.

Every module must at least offer blocking send and receive calls. The sendto()
function accepts destination, a buffer and a message-size as parameters. There is
no tag and so the ordering of messages is significant for the message matching.
The recvfrom() function gets a source, a buffer and a size as parameters and
blocks until some data is received. The recvfrom() function returns the number
of received bytes. Macros to send or receive a complete message (send all() and
recv all()) are also available.

An optional non-blocking interface can be used to benchmark asynchronous
communication or analyze overlap capabilities of the communication protocols.
This interface is the same as the blocking interface except it contains an addi-
tional request handle. Some of the patterns that require non-blocking communi-
cation (e.g., 1:n) will not work with communication modules that do not offer
this functionality.



V

Memory Registration Issues

Some types of networks need registered memory areas for communication. Typ-
ically the interface to those networks exposes functions to register memory. The
communication functions have to ensure data transmission only from registered
memory to registered memory. Thus the communication module has a member
function to allocate memory for data transmission. Patterns have to use this
function instead of malloc(). The communication module has to perform all the
tasks to setup memory for communication. In many cases this includes the use
of some hash table to store additional information (i.e. LKEY and RKEY for
InfiniBand).

2.3 Control Flow

Netgauge’s main routine is the only part that interacts directly with the user.
All modules for all frameworks are registered at the beginning of the program.
The selected module is initialized and its parameters are passed in the module’s
getopt() function (this enable communication module implementors who add
network-specific command line arguments). General internal variables like e.g.,
maximum message size and test repetitions are set and the user-selected pattern
module is called. The pattern module performs all benchmarks and may either
print the results directly or use helper functions provided by the statistics and
output module to process and output data. All modules may use MPI calls
(e.g., to exchange address information or parameters in order to establish initial
connections). However, the implementor should try to avoid excessive MPI usage
so that the modules can also be used in environments without MPI (which is
supported by a basic set of modules).

2.4 Other Available Communication Patterns

Simple Microbenchmark Patterns

This section describes simple patterns that are available in Netgauge.

Pattern 1:1 The main purpose of the one–to–one communication pattern,
shown in Fig. 2, is to test a bisectional bandwidth3 of a given network. This pat-
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Fig. 2. The one–to–one communication pattern of Netgauge

tern communicates data between an even number of Netgauge processes. The
setup stage splits all processes randomly into a group of servers and a group of
clients of equal sizes. One member of each group gets associated with exactly
one partner of the other group. After these steps the benchmark performs a
barrier synchronization and synchronously starts sending data between all pairs

3 the bisection is determined randomly, i.e., client/server pairs are chosen randomly
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of server and client processes. Thus, one may assume that all pairs communi-
cate approximately at the same time. The special case of two communicating
processes represents the well–known ping–pong test.

Pattern 1:n and n:1 The communication patterns one–to–many and many–
to–one, shown in Fig. 3 perform an asymmetric network benchmark. In contrast
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Fig. 3. The many–to–one communication pattern of Netgauge

to the most conventional approaches many processes send data to a single pro-
cess or a single process sends data to many processes. This pattern is most
suitable to determine the behavior of the network’s flow control or congestion
control. Netgauge randomly selects one of the processes to be the server and the
remaining processes (n) work as clients. Before the actual test starts, a barrier
synchronization is done. All client processes start sending data to the server
process which receives the entire data volume of the clients and sends a reply
as soon as it received all data. The current implementation uses non-blocking
communication to ensure a realistic benchmark. The clients measure the time
of this operation. In each subsequent round, more data is sent, up to the user
specified limit. Thus, this time measurement allows the user to rate the efficiency
of flow control and congestion control.

Network Model Parametrization Patterns

Model parametrization patterns are much more complex than microbenchmark
patterns. They use elaborate methods to assess parameters of different network
models. They are not described in detail due to space restrictions but refer-
ences to the original publications which describe the methodology in detail are
provided.

Pattern LogGP The LogGP pattern implements the LogGP parameter as-
sessment method described in [19] for blocking communication. This method
uses a mixture of 1:1 and 1:n benchmarks with inter-message delay to determine
the parameters g, G and o as exactly as possible. The parameter L can not be
measured exactly (cf. [19]).

Pattern pLogP The pLogP pattern implements the measurement of os and
or in terms of Kielmann’s pLogP model. Details about the measurement method
can be found in [4].

2.5 Available Communication Modules

Two-sided Communication Modules

Two-sided communication modules implement two-sided communication proto-
cols where both, the sender and the receiver are involved in the communication.
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The protocol is relatively simple and maps easily to Netgauge’s internal commu-
nication interface. The receiver has to post a receive and the sender a matching
send. It is important to mention that the simplified module interface does not
offer message tagging, i.e., the message ordering determines the matching at the
receiver.

Module MPI Netgauge is able to use the well–known Message Passing In-
terface to perform the actual data transmission. Since MPI is frequently used
in parallel programs this feature is useful for many users. The MPI module
of Netgauge makes use of the conventional send and receive calls, known as
point–to–point communication in the MPI specification. Blocking semantics are
supported by calls to MPI Send() and MPI Recv(). The functions MPI Isend()

and MPI Irecv() are used to implement the non–blocking interface. Because of
its simplicity and complete implementation the MPI module serves as baseline
for implementing other network modules. The semantics of the corresponding
module functions of Netgauge are very close to those of MPI.

Socket-Based Modules Several modules supporting standard Unix System
V socket-based communications are available. The “TCP” module creates net-
work sockets prepared for the streaming protocol [20]. The “UDP” module im-
plements communication with UDP [21] sockets. It is able to send data up to the
maximum datagram size (64 kiB). The “IP” module of Netgauge sends and re-
ceives data using raw IP sockets [22]. The raw Ethernet (“ETH”) module opens
a raw socket and sends crafted Ethernet packets to the wire. The opening of raw
sockets requires administrator access. Standard Posix sendto() and recvfrom()

calls are used to transmit data..

Support for two special socket-based low-overhead cluster protocols is also
available. The Ethernet Datagram Protocol (“EDP”) and the Ethernet Stream-
ing Protocol (“ESP”) are described in [23, 24] in detail. They aim at the reduc-
tion of communication overhead in high-performance computing cluster environ-
ments.

This support for many different protocol layers inside the operation system
enables the user to determine the quality of the higher-level protocol implemen-
tations (e.g., TCP, UDP) by comparing with raw device performance.

Module Myrinet/GM The Myrinet/GM (“GM”) module implements an
interface to the Glenn’s Messages API of Myrinet [25]. It supports RDMA and
send/receive over GM. Different memory registration strategies, such as regis-
tering the buffer during the send, copying the data into a pre-registered buffer
and sending out of a registered buffer without copying are supported.

Module InfiniBand The communication module for the native InfiniBand
[26] interface (“IB”) invokes the API from the OpenFabrics project to transmit
data over InfiniBand network adapters. Currently the module supports the four
transport types of InfiniBand: Reliable Connection, Unreliable Connection, Re-
liable Datagram and Unreliable Datagram. The unreliable transport types do
not protect against packet loss since additional protocol overhead would affect
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the performance measurements. Blocking send posts a work queue element ac-
cording to the InfiniBand specification and polls for completion of this request
and returns. The blocking receive function works in a similar way.

One-sided Communication Modules

In one–sided communication the sender directly writes to the memory of the
passive receiver. To test for new data, the receiver may poll for a flag, although
this action does not belong to the task of pure data transmission. Usually one–
sided communication requires synchronization between sender and receiver. The
sender has to get the information about the memory area of the receiver. More-
over, some flag may be required to notify the receiver about the completion of
the data transfer. The protocol of Netgauge maintains sequence numbers for
both the sender and the receiver. The sender increments the sequence count of a
public counter variable at the receiver after data transmission. Accordingly, the
receiver checks the public sequence count against a local sequence count to test
for completion of the data transmission. The protocol is illustrated in Fig. 4.

recvfrom()

sendto()

Sequence no.
(local)

Sequence no.

(local)

Write Data Increment Sequence

return

Write Sequence

Wait for Data Poll until
exp. sequence > local sequence

Sequence no.
(local)
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Sequence no.
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Sender

0

0

1

0

0 1

Sequence no.
(exposed) 1

1

# Packets to Receiver # Packets to Receiver

# Packets from Sender

# Packets from Sender

# Packets from Sender

Receiver

# Packets from Sender

Sequence no.
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Fig. 4. The protocol for one–sided communication modules

Module ARMCI The “ARMCI” module uses the ARMCI API [27] to com-
municate. The blocking send interface utilizes ARMCI Put() to copy data to the
remote side and the receive polls the completion flag.

Module MPI-2 One Sided MPI 2.0 features the one–sided communication
functions to access remote memory without participation of the target process
[28, 29]. The corresponding Netgauge module performs data transmission using
these MPI functions. Any send operation corresponds to an access epoch ac-
cording to the MPI 2.0 specification. In the same way any receive operation is
associated with one exposure epoch.

Module SCI The Scalable Coherent Interface (“SCI”) [30] is a network type
providing shared memory access over a cluster of workstations. Data is trans-
mitted by writing and reading to and from remote memory segments mapped
into the address space of a process. The SCI module of Netgauge sends data to
a receiver by writing to the remote memory.
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3 Benchmark Examples and Results

To demonstrate the effectiveness of Netgauge, we present a small selection of
benchmark graphs that we recorded with different transport protocols and pat-
terns.

Two test clusters were used to run the benchmarks. On system A, a dual Intel
Woodcrest 2 GHz cluster with 1 InfiniBand HCA Mellanox MT25204 InfiniHost
III and 2 Gigabit Ethernet ports driven by Intel 82563, we run all tests regarding
Ethernet, InfiniBand and ARMCI. System B, a dual AMD Athlon MP 1.4 GHz
with 1 Myrinet 2000 network card and 1 Gigabit Ethernet port SysKonnect
SK-98, was used to benchmark Myrinet.

3.1 Benchmarks of the 1:1 Communication Pattern

The one–to–one communication pattern, described in Section 2.4 provides pair-
wise communication between an arbitrary number of processes. Fig. 5 shows the
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Fig. 5. Comparison of the Latency (left) and Bandwidth (right) of a one–to–one com-
munication via MPI IB and IPoIB

latency and bandwidth measurements of an InfiniBand network. The results are
given for MPI over InfiniBand and TCP using IPoIB. This benchmark allows
to assess the performance and implementation quality of the different protocol
layers. The slope of IPoIB transmission falls behind the performance of MPI over
InfiniBand using Open MPI 1.1.3.

3.2 Benchmarks of the 1:n Communication Pattern

The 1:n communication pattern, described in Section 2.4, was used to compare
the flow-control implementation of the specialized ESP [24] protocol with the
traditional TCP/IP implementation. The results are shown in Fig. 6. This shows
that the ESP implementation achieves a reasonably higher bandwidth and lower
latency than TCP/IP for this particular communication pattern.

3.3 Benchmarks of the LogGP Communication Pattern

The LogGP communication pattern implements the LogGP parameter measure-
ment method presented in [19]. The left diagram in the following figures shows
the message size dependent overhead of the communication protocol and the
right part shows the network transmission graph T . This graph can be used to
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derive the two parameters g (value at size=1 byte) and G (slope of the graph)
and is discussed in detail in [19]. It results from different PRTT measurements,
and is calculated as T (s) = (PRTT (n, 0, s)− PRTT (1, 0, s))/(n− 1) where we
chose n = 16 and s represents the message size.

Fig. 7 compares the InfiniBand IP over IB implementation with Open MPI
1.1/OFED. We see that the overhead is as high as the network transmission time.
This is due to our use of blocking communication to benchmark this results. Two
different protocol regions for the MPI implementation and the pattern can be
seen (g = 1.82, G = 0.0012 for s < 12kiB and g = 19.75, G = 0.0016 for
s > 12kiB). The IPoIB implementation results in g = 7.79, G = 0.0061.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 5  10  15  20  25  30

O
v
e
rh

e
a
d
 (

u
s
e
c
)

Message Size (kilobytes)

IPoIB
Open MPI 1.1

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 5  10  15  20  25  30

T
im

e
 (

u
s
e
c
)

Message Size (kilobytes)

T(s) IPoIB
T(s) Open MPI

Fig. 7. LogGP graphics for different InfiniBand based transport protocols

4 Conclusions and Future Work

We introduced the Netgauge network performance analysis tool with support
for many different network communication protocols. The modular structure
and clear interface definition allows for an easy addition of new network mod-
ules to support additional protocols and benchmarks. Netgauge offers an ex-
tensible set of different simple and complex network communication patterns.
The large number of protocol implementations enables a comparison between



XI

different transport protocols and different transport layers. Different benchmark
examples and other tests demonstrated the broad usability of the Netgauge tool.

We are planning to add new communication modules for different networks
and to design more complex communication patterns.
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